Extensions 1→N→G→Q→1 with N=C22×C5⋊D5 and Q=C2

Direct product G=N×Q with N=C22×C5⋊D5 and Q=C2
dρLabelID
C23×C5⋊D5200C2^3xC5:D5400,220

Semidirect products G=N:Q with N=C22×C5⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×C5⋊D5)⋊1C2 = C2×C5⋊D20φ: C2/C1C2 ⊆ Out C22×C5⋊D540(C2^2xC5:D5):1C2400,177
(C22×C5⋊D5)⋊2C2 = D10⋊D10φ: C2/C1C2 ⊆ Out C22×C5⋊D5204+(C2^2xC5:D5):2C2400,180
(C22×C5⋊D5)⋊3C2 = C2×C20⋊D5φ: C2/C1C2 ⊆ Out C22×C5⋊D5200(C2^2xC5:D5):3C2400,193
(C22×C5⋊D5)⋊4C2 = D4×C5⋊D5φ: C2/C1C2 ⊆ Out C22×C5⋊D5100(C2^2xC5:D5):4C2400,195
(C22×C5⋊D5)⋊5C2 = C2×C527D4φ: C2/C1C2 ⊆ Out C22×C5⋊D5200(C2^2xC5:D5):5C2400,200
(C22×C5⋊D5)⋊6C2 = C22×D52φ: C2/C1C2 ⊆ Out C22×C5⋊D540(C2^2xC5:D5):6C2400,218

Non-split extensions G=N.Q with N=C22×C5⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×C5⋊D5).1C2 = C10.D20φ: C2/C1C2 ⊆ Out C22×C5⋊D540(C2^2xC5:D5).1C2400,73
(C22×C5⋊D5).2C2 = C10.11D20φ: C2/C1C2 ⊆ Out C22×C5⋊D5200(C2^2xC5:D5).2C2400,102
(C22×C5⋊D5).3C2 = C2×Dic52D5φ: C2/C1C2 ⊆ Out C22×C5⋊D540(C2^2xC5:D5).3C2400,175
(C22×C5⋊D5).4C2 = C102⋊C4φ: C2/C1C2 ⊆ Out C22×C5⋊D5100(C2^2xC5:D5).4C2400,155
(C22×C5⋊D5).5C2 = C1024C4φ: C2/C1C2 ⊆ Out C22×C5⋊D5204+(C2^2xC5:D5).5C2400,162
(C22×C5⋊D5).6C2 = C22×C5⋊F5φ: C2/C1C2 ⊆ Out C22×C5⋊D5100(C2^2xC5:D5).6C2400,216
(C22×C5⋊D5).7C2 = C22×C52⋊C4φ: C2/C1C2 ⊆ Out C22×C5⋊D540(C2^2xC5:D5).7C2400,217
(C22×C5⋊D5).8C2 = C2×C4×C5⋊D5φ: trivial image200(C2^2xC5:D5).8C2400,192

׿
×
𝔽